Supplementary material to:
P. Marconcini, M. Macucci,
“The $k \cdot p$ method and its application to graphene, carbon nanotubes and graphene nanoribbons: the Dirac equation”

P. Marconcini (*) and M. Macucci (**)

Dipartimento di Ingegneria dell’Informazione, Università di Pisa,
Via G. Caruso 16, I-56122 Pisa, Italy

(ricevuto il 9 Gennaio 2011)
1. – Note on pp. 518–520

The equation (126) can clearly be obtained also exploiting the completeness relation for the adopted basis functions.

Indeed, if we define |j′m⟩ ≡ ϕ(r - Rj′m) and thus ψj′(Rj′m) = ⟨j′m|ψ⟩ (where j′ = A, B indicates the type of the atom and m specifies the particular atom), equation (120) can be rewritten as

\[|ψ⟩ = \sum_{j′,m} |j′m⟩⟨j′m|ψ⟩ = \left[\sum_{j′,m} |j′m⟩⟨j′m|ψ⟩ \right] |ψ⟩. \]

If we insert the relation \(\sum_{j′,m} |j′m⟩⟨j′m| = 1 \) (completeness relation) inside equation (121), we obtain

\[H \left[\sum_{j′,m} |j′m⟩⟨j′m|ψ⟩ \right] = E \left[\sum_{j′,m} |j′m⟩⟨j′m|ψ⟩ \right] \Rightarrow \sum_{j′,m} H|j′m⟩⟨j′m|ψ⟩ = E \sum_{j′,m} |j′m⟩⟨j′m|ψ⟩. \]

If then we left-multiply by ⟨jn|, we arrive at

\[\sum_{j′,m} ⟨jn|H|j′m⟩⟨j′m|ψ⟩ = E \sum_{j′,m} ⟨jn|j′m⟩⟨j′m|ψ⟩ \Rightarrow \sum_{j′,m} h_{Rj, Rj′m}ψj′(Rj′m) = E \sum_{j′,m} s_{Rj, Rj′m}ψj′(Rj′m), \]

which coincides with the equation (126).
The multiplication by the smoothing function $g(r - R_i)$ (with $i = A$ or B) is just an analytical way to attribute each value $F(R_i)$, originally defined only at the lattice point R_i, to the region surrounding the point R_i, in such a way as to extend the definition domain of the envelope functions to all the points r of the plane.

More in detail, in the following calculations we will first multiply each tight-binding equation by a proper phase term, in such a way as to end up with terms, slowly varying in the space, in which the phase term is absent, and other terms in which a phase term $e^{\pm i(K' - K) \cdot R_i}$ appears and makes them very fast-variable in space. Then, we will sum the resulting equation over R_i, using as a weight function the smoothing function $g(r - R_i)$ (with r a generic point of the plane). In this way, we will actually average the values that each term of the equation assumes at the lattice points R_i located inside a neighborhood of r. For the terms which not contain the phase factor $e^{\pm i(K' - K) \cdot R_i}$, this procedure makes it possible to define the slowly-variable envelope functions in all the points r of the plane, averaging over the values that it assumes at the lattice points R_i around r. Instead, the terms containing the phase factor $e^{\pm i(K' - K) \cdot R_i}$ will disappear. Indeed, averaging, over a sufficiently wide number of lattice points R_i, the product of the value of an envelope function F, which is very slowly-varying in space, and of a term $e^{\pm i(K' - K) \cdot R_i}$, which over the domain has very rapid variations around a null average value, we obtain a null result.
3. – Extended version of the calculations at pp. 525–531

If we multiply the first of the tight-binding equations (140) by \(g(r - R_A) e^{-iK \cdot R_A} \) and we sum it over \(R_A \), we find

\[
E \sum_{R_A} g(r - R_A) F_A^K(R_A) =
- E i e^{i\theta} \sum_{R_A} g(r - R_A) e^{i(K' - K) \cdot R_A} F_A^{K'}(R_A)
- \sum_{R_A} g(r - R_A) u(R_A) F_A^K(R_A)
+ i e^{i\theta} \sum_{R_A} g(r - R_A) e^{i(K' - K) \cdot R_A} u(R_A) F_A^{K'}(R_A) =
- \gamma_0 \sum_{l=1}^{3} e^{-iK' \cdot \tau_l} \sum_{R_A} g(r - R_A) e^{i(K' - K) \cdot R_A} F_B^{K'}(R_A - \tau_l);
\]

exploiting the property (144), it becomes

\[
E \sum_{R_A} g(r - R_A) F_A^K(r) - E i e^{i\theta} \sum_{R_A} g(r - R_A) e^{i(K' - K) \cdot R_A} F_A^{K'}(r) =
- \sum_{R_A} g(r - R_A) u(R_A) F_A^K(r)
+ i e^{i\theta} \sum_{R_A} g(r - R_A) e^{i(K' - K) \cdot R_A} u(R_A) F_A^{K'}(r) =
- \gamma_0 \sum_{l=1}^{3} e^{-iK' \cdot \tau_l} \sum_{R_A} g(r - R_A) e^{i(K' - K) \cdot R_A} F_B^{K'}(r - \tau_l);
\]

For the quantities in the square brackets, we can use the properties (141) and (143), together with the definitions

\[
u_A(r) = \sum_{R_A} g(r - R_A) u(R_A), \quad u'_A(r) = \sum_{R_A} g(r - R_A) e^{i(K' - K) \cdot R_A} u(R_A),
\]

obtaining:

\[
E F_A^K(r) - u_A(r) F_A^K(r) + i e^{i\theta} u'_A(r) F_A^{K'}(r) =
- \gamma_0 \sum_{l=1}^{3} e^{-iK' \cdot \tau_l} F_B^K(r - \tau_l).
\]
Let us now calculate the value of the sums which appear in the previous expression

\[\sum_{l=1}^{\infty} e^{-iK \tau_l} F_B^K (r - \tau_l) \approx \sum_{l=1}^{\infty} e^{-iK \tau_l} \left[F_B^K (r) - \left(\tau_l \cdot \frac{\partial}{\partial r} \right) F_B^K (r) \right] = \left\{ \sum_{l=1}^{\infty} e^{-iK \tau_l} F_B^K (r) - \left[\sum_{l=1}^{\infty} e^{-iK \tau_l} \left(\tau_l \cdot \frac{\partial}{\partial r} \right) F_B^K (r) \right] \right\}. \]

Expanding the smooth quantity

\[\left(\sum_{l=1}^{\infty} e^{-iK \tau_l} \right) F_B^K (r) - \left[\sum_{l=1}^{\infty} e^{-iK \tau_l} \left(\tau_l \cdot \frac{\partial}{\partial r} \right) F_B^K (r) \right]. \]

Let us now calculate the value of the sums which appear in the previous expression

\[\sum_{l=1}^{\infty} e^{-iK \tau_l} = 1 + e^{-i \frac{2\pi}{3}} + e^{i \frac{2\pi}{3}} = 0; \]

\[\sum_{l=1}^{\infty} e^{-iK \tau_l} \left(\tau_l \cdot \frac{\partial}{\partial r} \right) = 1 - \frac{a}{\sqrt{3}} \left(\frac{\partial}{\partial x'} - \frac{\sqrt{3}}{2} \frac{\partial}{\partial y'} \right) + e^{-i \frac{2\pi}{3}} \frac{a}{\sqrt{3}} \left(\frac{\partial}{\partial x'} + \frac{\sqrt{3}}{2} \frac{\partial}{\partial y'} \right) = \frac{a}{\sqrt{3}} \left(-1 + \frac{1}{2} e^{-i \frac{2\pi}{3}} + \frac{e^{i \frac{2\pi}{3}}}{2} \right) \frac{\partial}{\partial x'} + \left(-\frac{\sqrt{3}}{2} e^{-i \frac{2\pi}{3}} + \frac{\sqrt{3}}{2} e^{i \frac{2\pi}{3}} \right) \frac{\partial}{\partial y'} \right). \]

Since

\[-1 + \frac{1}{2} e^{-i \frac{2\pi}{3}} + \frac{e^{i \frac{2\pi}{3}}}{2} = -1 + \frac{1}{2} \left(e^{-i \frac{2\pi}{3}} + e^{i \frac{2\pi}{3}} \right) = -1 + \frac{1}{2} (1) = -\frac{3}{2} \]

and

\[-\frac{\sqrt{3}}{2} e^{-i \frac{2\pi}{3}} + \frac{\sqrt{3}}{2} e^{i \frac{2\pi}{3}} = \frac{\sqrt{3}}{2} \left(e^{i \frac{2\pi}{3}} - e^{-i \frac{2\pi}{3}} \right) = \frac{\sqrt{3}}{2} (i \sqrt{3}) = \frac{3}{2}, \]

we have that

\[\sum_{l=1}^{\infty} e^{-iK \tau_l} \left(\tau_l \cdot \frac{\partial}{\partial r} \right) = \frac{a}{\sqrt{3}} \left(\frac{\partial}{\partial x'} - \frac{\sqrt{3}}{2} \frac{\partial}{\partial y'} \right) = -\frac{\sqrt{3}}{2} a(i \dot{k}_{x'} + \dot{k}_{y'}) = -\frac{\sqrt{3}}{2} a(\dot{k}_{x'} - i \dot{k}_{y'}), \]

where we have defined \(\dot{k} = -i \nabla \) and thus

\[\dot{k}_{x'} = -i \frac{\partial}{\partial x'} \quad \text{and} \quad \dot{k}_{y'} = -i \frac{\partial}{\partial y'}. \]

Substituting these results, eq. (148) becomes

\[\left[E F_A^K (r) - u_A (r) F_A^K (r) + i e^{i \theta'} u_A (r) F_A^K (r) \right] \simeq \left[-\gamma_0 e^{i \theta'} \left(\frac{\sqrt{3}}{2} a(\dot{k}_{x'} - i \dot{k}_{y'}) F_B^K (r) \right) \right] = \frac{\sqrt{3}}{2} \gamma_0 a e^{i \theta'} (\dot{k}_{x'} - i \dot{k}_{y'}) F_B^K (r) = \gamma (\dot{k}_x - i \dot{k}_y) F_B^K (r). \]
where we have passed from the original reference frame $\Sigma' = (\hat{x}', \hat{y}', \hat{z}')$ to a new frame $\Sigma = (\hat{x}, \hat{y}, \hat{z})$, rotated, in the plane (\hat{x}', \hat{y}'), around the origin by an angle θ' (positive in the counterclockwise direction) with respect to the original one (fig. 7) and we have used the fact that

$$e^{i\theta'(\hat{k}_x' - i\hat{k}_y')} = (\cos \theta' + i \sin \theta')(\hat{k}_x' - i\hat{k}_y') =$$

$$(\cos \theta' \hat{k}_x' + \sin \theta' \hat{k}_y') - i(\cos \theta' \hat{k}_y' - \sin \theta' \hat{k}_x') = \hat{k}_x - i\hat{k}_y$$

(due to the relations between old and new coordinates), with

$$\hat{k}_x = -i \frac{\partial}{\partial x} \quad \text{and} \quad \hat{k}_y = -i \frac{\partial}{\partial y}.$$

Indeed, it is a well-known result that, for a rotation by θ' of the reference frame, the relations between the new and the old coordinates are $x = x' \cos \theta' + y' \sin \theta'$ and $y = y' \cos \theta' - x' \sin \theta'$. Therefore we have that

$$\frac{\partial F(x, y)}{\partial x'} = \frac{\partial F(x, y)}{\partial x} \frac{\partial x}{\partial x'} + \frac{\partial F(x, y)}{\partial y} \frac{\partial y}{\partial x'} = \frac{\partial F(x, y)}{\partial x} \cos \theta' = \frac{\partial F(x, y)}{\partial y} \sin \theta' \cos \theta'$$

and that

$$\frac{\partial F(x, y)}{\partial y'} = \frac{\partial F(x, y)}{\partial x} \frac{\partial x}{\partial y'} + \frac{\partial F(x, y)}{\partial y} \frac{\partial y}{\partial y'} = \frac{\partial F(x, y)}{\partial x} \sin \theta' + \frac{\partial F(x, y)}{\partial y} \cos \theta' \sin \theta'.$$

As a consequence, we have that

$$\frac{\partial F(x, y)}{\partial x'} (\cos \theta' \hat{k}_x' + \sin \theta' \hat{k}_y') = \cos \theta' \left(-i \frac{\partial F(x, y)}{\partial x'} \right) + \sin \theta' \left(-i \frac{\partial F(x, y)}{\partial y'} \right) =$$

$$- i \left[\frac{\partial F(x, y)}{\partial x} \cos^2 \theta' - \frac{\partial F(x, y)}{\partial y} \cos \theta' \sin \theta' \right. \right.$$

$$+ \left. \frac{\partial F(x, y)}{\partial x} \sin^2 \theta' + \frac{\partial F(x, y)}{\partial y} \sin \theta' \cos \theta' \right] =$$

$$- i \frac{\partial F(x, y)}{\partial x} (\cos^2 \theta' + \sin^2 \theta') = - i \frac{\partial F(x, y)}{\partial x} = \hat{k}_x F(x, y)$$

and that

$$\frac{\partial F(x, y)}{\partial x'} (\cos \theta' \hat{k}_y' - \sin \theta' \hat{k}_x') = \cos \theta' \left(-i \frac{\partial F(x, y)}{\partial y'} \right) - \sin \theta' \left(-i \frac{\partial F(x, y)}{\partial x'} \right) =$$

$$- i \left[\frac{\partial F(x, y)}{\partial x} \sin \theta' \cos \theta' + \frac{\partial F(x, y)}{\partial y} \cos^2 \theta' - \right. \right.$$

$$- \left. \frac{\partial F(x, y)}{\partial x} \cos \theta' \sin \theta' + \frac{\partial F(x, y)}{\partial y} \sin^2 \theta' \right] =$$

$$- i \frac{\partial F(x, y)}{\partial y} (\cos^2 \theta' + \sin^2 \theta') = - i \frac{\partial F(x, y)}{\partial y} = \hat{k}_y F(x, y),$$

from which we obtain eq. (154).
Analogously, if we multiply the second of the tight-binding equations (140) by \(g(r - R_B) \) and we sum it over \(R_B \), we find

\[
E \sum_{R_B} g(r - R_B) f_B^K(R_B) - E i e^{-i \theta'} \sum_{R_B} g(r - R_B) e^{i(K' - K) R_B} f_B^{K'}(R_B)
\]

\[
- \sum_{R_B} g(r - R_B) u(R_B) f_B^K(R_B)
\]

\[
+ i e^{-i \theta'} \sum_{R_B} g(r - R_B) e^{i(K' - K) R_B} u(R_B) f_B^{K'}(R_B) =
\]

\[
\gamma_0 i e^{-i \theta'} \sum_{l=1}^3 e^{iK_T l} \sum_{R_B} g(r - R_B) f_A^K(R_B + \tau l)
\]

\[
+ \gamma_0 \sum_{l=1}^3 e^{iK_T l} \sum_{R_B} g(r - R_B) e^{i(K' - K) R_B} f_A^{K'}(R_B + \tau l);
\]

exploiting the property (144), it becomes

\[
E \left[\sum_{R_B} g(r - R_B) \right] f_B^K(r) - E i e^{-i \theta'} \left[\sum_{R_B} g(r - R_B) e^{i(K' - K) R_B} \right] f_B^{K'}(r)
\]

\[
- \left[\sum_{R_B} g(r - R_B) u(R_B) \right] f_B^K(r)
\]

\[
+ i e^{-i \theta'} \left[\sum_{R_B} g(r - R_B) e^{i(K' - K) R_B} u(R_B) \right] f_B^{K'}(r) =
\]

\[
\gamma_0 i e^{-i \theta'} \sum_{l=1}^3 e^{iK_T l} \left[\sum_{R_B} g(r - R_B) \right] f_A^K(r + \tau l)
\]

\[
+ \gamma_0 \sum_{l=1}^3 e^{iK_T l} \left[\sum_{R_B} g(r - R_B) e^{i(K' - K) R_B} \right] f_A^{K'}(r + \tau l).
\]
For the quantities in the square brackets, we can use the properties (141) and (143), together with the definitions

\(u_B(r) = \sum_{R_B} g(r - R_B) u(R_B), \quad u'_B(r) = \sum_{R_B} g(r - R_B) e^{i(K' \cdot K)} R_B u(R_B), \)

obtaining

\[
E F_B^K(r) - u_B(r) F_B^K(r) + i e^{-i\theta'} u'_B(r) F_B^{K'}(r) = \gamma_0 i e^{-i\theta'} \sum_{l=1}^{3} e^{iK \tau_l} F_A^K(r + \tau_l).
\]

Expanding the smooth quantity \(F_A^K(r + \tau_l) \) to the first order in \(\tau_l \), we have that

\[
\sum_{l=1}^{3} e^{iK \tau_l} F_A^K(r + \tau_l) \simeq \sum_{l=1}^{3} e^{iK \tau_l} \left[F_A^K(r) + \left(\tau_l \cdot \frac{\partial}{\partial r} \right) F_A^K(r) \right] = \sum_{l=1}^{3} e^{iK \tau_l} \left(F_A^K(r) \right).
\]

Let us now calculate the value of the sums which appear in the previous expression

\[
\sum_{l=1}^{3} e^{iK \tau_l} = 1 + e^{i\frac{2\pi}{3}} + e^{-i\frac{2\pi}{3}} = 0;
\]

\[
\sum_{l=1}^{3} e^{iK \tau_l} \left(\tau_l \cdot \frac{\partial}{\partial r} \right) = \frac{a}{\sqrt{3}} \left(-\frac{\partial}{\partial x'} \right)
\]

\[
+ e^{i\frac{2\pi}{3}} \frac{a}{\sqrt{3}} \left(\frac{1}{2} \frac{\partial}{\partial x'} - \frac{\sqrt{3}}{2} \frac{\partial}{\partial y'} \right) + e^{-i\frac{2\pi}{3}} \frac{a}{\sqrt{3}} \left(\frac{1}{2} \frac{\partial}{\partial x'} + \frac{\sqrt{3}}{2} \frac{\partial}{\partial y'} \right) = \frac{a}{\sqrt{3}} \left(-1 + e^{i\frac{2\pi}{3}} + e^{-i\frac{2\pi}{3}} \right) \frac{\partial}{\partial x'} + \left(-\frac{\sqrt{3}}{2} e^{i\frac{2\pi}{3}} + \frac{\sqrt{3}}{2} e^{-i\frac{2\pi}{3}} \right) \frac{\partial}{\partial y'}.
\]

Since

\[-1 + e^{i\frac{2\pi}{3}} + e^{-i\frac{2\pi}{3}} = -1 + \frac{1}{2} (e^{i\frac{2\pi}{3}} + e^{-i\frac{2\pi}{3}}) = -1 + \frac{1}{2}(-1) = -\frac{3}{2}\]

and

\[-\frac{\sqrt{3}}{2} e^{i\frac{2\pi}{3}} + \frac{\sqrt{3}}{2} e^{-i\frac{2\pi}{3}} = -\frac{\sqrt{3}}{2} (e^{i\frac{2\pi}{3}} - e^{-i\frac{2\pi}{3}}) = -\frac{\sqrt{3}}{2}(i\sqrt{3}) = -\frac{3}{2},\]

we have that

\[
\sum_{l=1}^{3} e^{iK \tau_l} \left(\tau_l \cdot \frac{\partial}{\partial r} \right) = \frac{a}{\sqrt{3}} \frac{3}{2} \left(\frac{\partial}{\partial x'} + i \frac{\partial}{\partial y'} \right) = -\frac{\sqrt{3}}{2} a(i\kappa_x' - \kappa_y').
\]
Substituting these results, eq. (162) becomes

\[
E F^K_B(r) - u_B(r) F^K_B(r) + i e^{-i\phi} u'_B(r) F^K'_B(r) = \\
\gamma_0 i e^{-i\phi} \left(-\frac{\sqrt{3}}{2} a(\hat{k}_x' + i\hat{k}_y') \right) F^K_A(r) = \\
\frac{\sqrt{3}}{2} \gamma_0 a e^{-i\phi}(\hat{k}_x' + i\hat{k}_y') F^K_A(r) = \gamma(\hat{k}_x + i\hat{k}_y) F^K_A(r),
\]

where we have made use of the relation

\[
e^{-i\phi}(\hat{k}_x' + i\hat{k}_y') = (\cos \theta' - i \sin \theta')(\hat{k}_x' + i\hat{k}_y') = \\
(\cos \theta' \hat{k}_x' + \sin \theta' \hat{k}_y') + i(\cos \theta' \hat{k}_y' - \sin \theta' \hat{k}_x') = \hat{k}_x + i\hat{k}_y.
\]

Instead, if we multiply the first of the tight-binding equations (140) by \(g(r - R_A)\times (i e^{-i\phi} e^{-iK' R_A})\) and we sum it over \(R_A\), we find

\[
E i e^{-i\phi} \sum_{R_A} g(r - R_A)e^{i(K - K') R_A} F^K_A(R_A) + E \sum_{R_A} g(r - R_A) F^K'_A(R_A) \\
- i e^{-i\phi} \sum_{R_A} g(r - R_A)e^{i(K - K') R_A} u(R_A) F^K_A(R_A) \\
- \sum_{R_A} g(r - R_A)u(R_A) F^K'_A(R_A) = \\
\gamma_0 \sum_{l=1}^3 e^{-iK' \tau_i} \sum_{R_A} g(r - R_A)e^{i(K - K') R_A} F^K_B(R_A - \tau_l) \\
- \gamma_0 i e^{-i\phi} \sum_{l=1}^3 e^{-iK' \tau_i} \sum_{R_A} g(r - R_A) F^K'_B(R_A - \tau_l);
\]

exploiting the property (144), it becomes

\[
E i e^{-i\phi} \left[\sum_{R_A} g(r - R_A)e^{i(K - K') R_A} F^K_A(r) \right] + E \left[\sum_{R_A} g(r - R_A) F^K'_A(r) \right] \\
- i e^{-i\phi} \left[\sum_{R_A} g(r - R_A)e^{i(K - K') R_A} u(R_A) F^K_A(r) \right] \\
- \left[\sum_{R_A} g(r - R_A)u(R_A) \right] F^K'_A(r) = \\
\gamma_0 \sum_{l=1}^3 e^{-iK' \tau_i} \left[\sum_{R_A} g(r - R_A)e^{i(K - K') R_A} F^K_B(r - \tau_l) \right] \\
- \gamma_0 i e^{-i\phi} \sum_{l=1}^3 e^{-iK' \tau_i} \left[\sum_{R_A} g(r - R_A) F^K'_B(r - \tau_l) \right].
\]
For the quantities in the square brackets, we can use the properties (141) and (143), in the form
\[
\sum_{R_A} g(r - R_A) e^{i(K - K')} R_A = \left(\sum_{R_A} g(r - R_A) e^{i(K - K')} R_A \right)^* = 0,
\]
obtaining
\[
EF_A^{K'}(r) - i e^{-i\theta} u_A^* (r) F_A^K (r) - u_A(r) F_A^{K'} (r) =
- \gamma_0 i e^{-i\theta} \sum_{l=1}^{3} e^{-iK' \cdot \tau_l} F_B^{K'} (r - \tau_l).
\]
Expanding the smooth quantity \(F_B^{K'} (r - \tau_l) \) to the first order in \(\tau_l \), we have that
\[
\sum_{l=1}^{3} e^{-iK' \cdot \tau_l} F_B^{K'} (r - \tau_l) \simeq \sum_{l=1}^{3} e^{-iK' \cdot \tau_l} \left[F_B^{K'} (r) - \left(\tau_l \cdot \frac{\partial}{\partial r} \right) F_B^{K'} (r) \right] =
\left(\sum_{l=1}^{3} e^{-iK' \cdot \tau_l} \right) F_B^{K'} (r) - \sum_{l=1}^{3} e^{-iK' \cdot \tau_l} \left(\tau_l \cdot \frac{\partial}{\partial r} \right) F_B^{K'} (r).
\]
Let us now calculate the value of the sums which appear in the previous expression
\[
\sum_{l=1}^{3} e^{-iK' \cdot \tau_l} = 1 + e^{i\frac{2\pi}{3}} + e^{-i\frac{2\pi}{3}} = 0;
\]
\[
\sum_{l=1}^{3} e^{-iK' \cdot \tau_l} \left(\tau_l \cdot \frac{\partial}{\partial r} \right) = \frac{a}{\sqrt{3}} \left(- \frac{\partial}{\partial x'} \right);
\]
\[
e^{i\frac{2\pi}{3}} \frac{a}{\sqrt{3}} \left(\frac{1}{2} \frac{\partial}{\partial x'} \frac{\sqrt{3}}{2} \frac{\partial}{\partial y'} \right) + e^{-i\frac{2\pi}{3}} \frac{a}{\sqrt{3}} \left(\frac{1}{2} \frac{\partial}{\partial x'} + \frac{\sqrt{3}}{2} \frac{\partial}{\partial y'} \right) =
\frac{a}{\sqrt{3}} \left(-1 + \frac{1}{2} e^{i\frac{2\pi}{3}} + \frac{1}{2} e^{-i\frac{2\pi}{3}} \right) \frac{\partial}{\partial x'} + \left(- \frac{\sqrt{3}}{2} e^{i\frac{2\pi}{3}} + \frac{\sqrt{3}}{2} e^{-i\frac{2\pi}{3}} \right) \frac{\partial}{\partial y'}.
\]
Since
\[
-1 + \frac{1}{2} e^{i\frac{2\pi}{3}} + \frac{1}{2} e^{-i\frac{2\pi}{3}} = -1 + \frac{1}{2} (e^{i\frac{2\pi}{3}} + e^{-i\frac{2\pi}{3}}) = -1 + \frac{1}{2} (-1) = -\frac{3}{2}
\]
and
\[
- \frac{\sqrt{3}}{2} e^{i\frac{2\pi}{3}} + \frac{\sqrt{3}}{2} e^{-i\frac{2\pi}{3}} = - \frac{\sqrt{3}}{2} e^{i\frac{2\pi}{3}} - e^{-i\frac{2\pi}{3}} = - \frac{\sqrt{3}}{2} (i \sqrt{3}) = - i \frac{3}{2},
\]
we have that
\[
\sum_{l=1}^{3} e^{-iK' \cdot \tau_l} \left(\tau_l \cdot \frac{\partial}{\partial r} \right) = - \frac{a}{\sqrt{3}} \left(\frac{\partial}{\partial x'} + i \frac{\partial}{\partial y'} \right) =
- \frac{\sqrt{3}}{2} a (i \kappa_x' - \kappa_y') = - i \frac{\sqrt{3}}{2} a (\kappa_x' + i \kappa_y').
\]
Substituting these results, eq. (167) becomes

\[EF_A^{K'}(r) - i e^{-i\theta'} u_A^*(r) F_A^K(r) - u_A(r) E_K(r) \approx \]
\[-\gamma_0 i e^{-i\theta'} \left(\frac{\sqrt{3}}{2} a(\hat{k}_x' + i\hat{k}_y') F_B^{K'}(r) \right) = \]
\[\frac{\sqrt{3}}{2} \gamma_0 a e^{-i\theta'} (\hat{k}_x' + i\hat{k}_y') F_B^{K'}(r) = \gamma (\hat{k}_x + i\hat{k}_y) F_B^{K'}(r), \]

where we have exploited the relation (166).

Finally, if we multiply the second of the tight-binding equations (140) by \(g(r - R_B) \times e^{-iK' R_B} \) and we sum it over \(R_B \), we find

\[
E i e^{i\theta'} \sum_{R_B} g(r - R_B) e^{i(K - K') R_B} F_B^K(R_B) + E \sum_{R_B} g(r - R_B) F_B^{K'}(R_B) \\
\quad - i e^{i\theta'} \sum_{R_B} g(r - R_B) e^{i(K - K') R_B} u(R_B) F_B^K(R_B) \\
\quad - \sum_{R_B} g(r - R_B) u(R_B) F_B^{K'}(R_B) = \\
\quad -\gamma_0 \sum_{l=1}^3 e^{iK' \tau_l} \sum_{R_B} g(r - R_B) e^{i(K - K') R_B} F_A^K(R_B + \tau_l) \\
\quad + \gamma_0 i e^{i\theta'} \sum_{l=1}^3 e^{iK' \tau_l} \sum_{R_B} g(r - R_B) F_A^{K'}(R_B + \tau_l); \\
\]

exploiting the property (144) it becomes

\[
E i e^{i\theta'} \left[\sum_{R_B} g(r - R_B) e^{i(K - K') R_B} F_B^K(r) \right] + E \left[\sum_{R_B} g(r - R_B) \right] F_B^{K'}(r) \\
\quad - i e^{i\theta'} \left[\sum_{R_B} g(r - R_B) e^{i(K - K') R_B} u(R_B) \right] F_B^K(r) \\
\quad - \left[\sum_{R_B} g(r - R_B) u(R_B) \right] F_B^{K'}(r) = \\
\quad -\gamma_0 \sum_{l=1}^3 e^{iK' \tau_l} \left[\sum_{R_B} g(r - R_B) e^{i(K - K') R_B} \right] F_A^K(r + \tau_l) \\
\quad + \gamma_0 i e^{i\theta'} \sum_{l=1}^3 e^{iK' \tau_l} \left[\sum_{R_B} g(r - R_B) \right] F_A^{K'}(r + \tau_l). \\
\]

For the quantities in the square brackets, we can use the properties (141) and (143), in the form

\[
\sum_{R_B} g(r - R_B) e^{i(K - K') R_B} = \left(\sum_{R_B} g(r - R_B) e^{i(K' - K) R_B} \right)^* = 0, \\
\]
obtaining

\begin{equation}
E F_B^{K'}(r) - i e^{iθ'} u_B^*(r) F_B^K(r) - u_B(r) F_B^{K'}(r) =
\gamma_0 i e^{iθ} \sum_{l=1}^{3} e^{iK' \cdot \tau_l} F_A^{K'}(r + \tau_l).
\end{equation}

Expanding the smooth quantity $F_A^{K'}(r + \tau_l)$ to the first order in τ_l, we have that

\begin{equation}
\sum_{l=1}^{3} e^{iK' \cdot \tau_l} F_A^{K'}(r + \tau_l) \simeq \sum_{l=1}^{3} e^{iK' \cdot \tau_l} \left[F_A^{K'}(r) + \left(\tau_l \cdot \frac{∂}{∂r} \right) F_A^{K'}(r) \right] =
\left(\sum_{l=1}^{3} e^{iK' \cdot \tau_l} \right) F_A^{K'}(r) + \left[\sum_{l=1}^{3} e^{iK' \cdot \tau_l} \left(\tau_l \cdot \frac{∂}{∂r} \right) \right] F_A^{K'}(r).
\end{equation}

Let us now calculate the value of the sums which appear in the previous expression

\begin{equation}
\sum_{l=1}^{3} e^{iK' \cdot \tau_l} = 1 + e^{-i \frac{2π}{3}} + e^{i \frac{2π}{3}} = 0;
\end{equation}

\begin{equation}
\sum_{l=1}^{3} e^{iK' \cdot \tau_l} \left(\tau_l \cdot \frac{∂}{∂r} \right) = \frac{a}{\sqrt{3}} \left(\frac{∂}{∂x'} \right);
\end{equation}

\begin{equation}
+ e^{-i \frac{2π}{3}} \frac{a}{\sqrt{3}} \left(\frac{1}{2} \frac{∂}{∂x'} - \sqrt{3} \frac{∂}{∂y'} \right) + e^{i \frac{2π}{3}} \frac{a}{\sqrt{3}} \left(\frac{1}{2} \frac{∂}{∂x'} + \sqrt{3} \frac{∂}{∂y'} \right) =
\frac{a}{\sqrt{3}} \left(-1 + \frac{1}{2} e^{-i \frac{2π}{3}} + \frac{1}{2} e^{i \frac{2π}{3}} \right) \frac{∂}{∂x'} + \left(-\frac{3}{2} e^{-i \frac{2π}{3}} + \frac{3}{2} e^{i \frac{2π}{3}} \right) \frac{∂}{∂y'} ,
\end{equation}

Since

\(-1 + \frac{1}{2} e^{-i \frac{2π}{3}} + \frac{1}{2} e^{i \frac{2π}{3}} = -1 + \frac{1}{2} (e^{-i \frac{2π}{3}} + e^{i \frac{2π}{3}}) = -1 + \frac{1}{2}(-1) = -\frac{3}{2} \)

and

\(-\frac{3}{2} e^{-i \frac{2π}{3}} + \frac{3}{2} e^{i \frac{2π}{3}} = \frac{3}{2} (e^{i \frac{2π}{3}} - e^{-i \frac{2π}{3}}) = \frac{3}{2} (i \sqrt{3}) = \frac{i 3}{2}.\)

we have that

\begin{equation}
\sum_{l=1}^{3} e^{iK' \cdot \tau_l} \left(\tau_l \cdot \frac{∂}{∂r} \right) = -\frac{a}{\sqrt{3}} \frac{3}{2} \left(\frac{∂}{∂x'} - i \frac{∂}{∂y'} \right) =
- \frac{\sqrt{3}}{2} a(i \hat{κ}_x + \hat{κ}_y) = -i \frac{\sqrt{3}}{2} a(\hat{κ}_x - i \hat{κ}_y).\)
Substituting these values, eq. (171) becomes

\begin{equation}
E F^K_B(r) - i e^{i\theta'} u^*_B(r) F^K_B(r) - u_B(r) F^K_B(r) = \\
\gamma_0 i e^{i\theta'} \left(-i\frac{\sqrt{3}}{2} a(\kappa_x - i\kappa_y)\right) F^K_B(r) = \\
\frac{\sqrt{3}}{2} \gamma_0 a e^{i\theta'}(\kappa_x - i\kappa_y) F^K_B(r) = \gamma(\kappa_z - i\kappa_y) E F^K_B(r),
\end{equation}

where we have exploited the relation (154).

In this way, we have obtained the four equations (153), (165), (170) and (174), that we can summarize

\begin{equation}
\begin{cases}
 u_A(r) F^K_A(r) + \gamma(\kappa_x - i\kappa_y) F^K_B(r) - i e^{i\theta'} u'_A(r) F^K_B(r) = E F^K_A(r), \\
 \gamma(\kappa_x + i\kappa_y) F^K_A(r) + u_B(r) F^K_B(r) - i e^{-i\theta'} u'_B(r) F^K_B(r) = E F^K_A(r), \\
 i e^{-i\theta'} u^*_A(r) F^K_A(r) + u_A(r) F^K_B(r) + \gamma(\kappa_x + i\kappa_y) F^K_B(r) = E F^K_B(r), \\
 i e^{i\theta'} u^*_B(r) F^K_B(r) + \gamma(\kappa_x - i\kappa_y) F^K_A(r) + u_B(r) F^K_A(r) = E F^K_B(r),
\end{cases}
\end{equation}

and write in matrix form

\begin{equation}
E \begin{bmatrix}
 u_A(r) \\
 \gamma(\kappa_x - i\kappa_y) \\
 \gamma(\kappa_x + i\kappa_y) \\
 i e^{-i\theta'} u^*_A(r) \\
 0 \\
 i e^{i\theta'} u^*_B(r)
\end{bmatrix}
\begin{bmatrix}
 F^K_A(r) \\
 F^K_B(r) \\
 F^K_A(r) \\
 F^K_B(r) \\
 F^K_A(r) \\
 F^K_B(r)
\end{bmatrix}
= \begin{bmatrix}
 \gamma(\kappa_x - i\kappa_y) u_B(r) \\
 \gamma(\kappa_x + i\kappa_y) u_A(r) \\
 0 \\
 \gamma(\kappa_x - i\kappa_y) u_B(r) \\
 \gamma(\kappa_x + i\kappa_y) u_A(r) \\
 0
\end{bmatrix},
\end{equation}

which is the $k \cdot p$ equation of graphene.
4. – Extended version of the calculations at p. 537

If we move to the momentum representation (see eq. (111)) and enforce

\[
\text{(202)} \quad \det \left\{ \begin{array}{cc} 0 & \gamma(k_x + i\kappa y) \\ \gamma(k_x - i\kappa y) & 0 \end{array} \right\} - E \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] = 0,
\]

we find the dispersion relations

\[
\text{(203)} \quad E_{s}^{K'}(\kappa) = s\gamma\sqrt{\kappa_x^2 + \kappa_y^2} = s\gamma|\kappa|,
\]

where \(s\) can assume the values +1 or −1.

The corresponding envelope functions are

\[
\text{(204)} \quad F_{s}^{K'}(r) = \frac{1}{\sqrt{2\Omega}} e^{i\kappa \cdot r} e^{i\tilde{\phi}_s(\kappa)} R(\alpha(\kappa)) |\bar{s}\rangle,
\]

with \(\tilde{\phi}_s(\kappa)\) an arbitrary phase factor and

\[
\text{(205)} \quad |\bar{s}\rangle = \frac{1}{\sqrt{2}} \left[\begin{array}{c} is \\ 1 \end{array} \right].
\]

This result is easily verified noting that

\[
\gamma \left[\begin{array}{cc} 0 & \hat{k}_x + i\hat{k}_y \\ \hat{k}_x - i\hat{k}_y & 0 \end{array} \right] F_{s}^{K'}(r) =
\gamma \left[\begin{array}{cc} 0 & \hat{k}_x + i\hat{k}_y \\ \hat{k}_x - i\hat{k}_y & 0 \end{array} \right] \frac{1}{\sqrt{2\Omega}} e^{i\kappa \cdot r} e^{i\tilde{\phi}_s(\kappa)} R(\alpha(\kappa)) |\bar{s}\rangle =
\gamma \left[\begin{array}{cc} 0 & i|\kappa|e^{ia} \\ -i|\kappa|e^{-ia} & 0 \end{array} \right] \left(\frac{1}{\sqrt{2\Omega}} e^{i\kappa \cdot r} e^{i\tilde{\phi}_s(\kappa)} \left[\begin{array}{cc} e^{i\frac{\pi}{2}} & 0 \\ 0 & e^{-i\frac{\pi}{2}} \end{array} \right] \frac{1}{\sqrt{2}} \left[\begin{array}{c} is \\ 1 \end{array} \right] \right) =
\frac{1}{2\sqrt{\Omega}} \gamma e^{i\kappa \cdot r} e^{i\tilde{\phi}_s(\kappa)} \left[\begin{array}{cc} 0 & is|\kappa| e^{i\frac{\pi}{2}} \\ -i|\kappa| e^{-i\frac{\pi}{2}} & 0 \end{array} \right] \left[\begin{array}{c} is \\ 1 \end{array} \right] =
\frac{1}{2\sqrt{\Omega}} e^{i(\kappa \cdot r + \tilde{\phi}_s(\kappa))} \left[\begin{array}{c} is|\kappa| e^{i\frac{\pi}{2}} \\ |\kappa| e^{-i\frac{\pi}{2}} \end{array} \right]
\]

and that also

\[
E_{s}^{K'} F_{s}^{K'}(r) = s\gamma|\kappa| \left(\frac{1}{\sqrt{2\Omega}} e^{i\kappa \cdot r} e^{i\tilde{\phi}_s(\kappa)} \left[\begin{array}{cc} e^{i\frac{\pi}{2}} & 0 \\ 0 & e^{-i\frac{\pi}{2}} \end{array} \right] \frac{1}{\sqrt{2}} \left[\begin{array}{c} is \\ 1 \end{array} \right] \right) =
\frac{1}{2\sqrt{\Omega}} \gamma e^{i(\kappa \cdot r + \tilde{\phi}_s(\kappa))} \left[\begin{array}{c} e^{i\frac{\pi}{2}} is|\kappa| e^{i\frac{\pi}{2}} \\ |\kappa| e^{-i\frac{\pi}{2}} \end{array} \right] =
\frac{1}{2\sqrt{\Omega}} e^{i(\kappa \cdot r + \tilde{\phi}_s(\kappa))} \left[\begin{array}{c} is|\kappa| e^{i\frac{\pi}{2}} \\ |\kappa| e^{-i\frac{\pi}{2}} \end{array} \right].
\]
From these functions F^K_A, F^K_B, $F^{K'}_A$, and $F^{K'}_B$, we can find the functions ψ_A and ψ_B and thus the electron wave function ψ in the absence of an external potential, using the relations (134) and (120).
5. – Extended version of the calculations at pp. 539–540

However the terms containing the phase factors \(e^{i(K' - K) \cdot R_A}, e^{i(K' - K) \cdot R_B}, \) or their complex conjugates are negligible with respect to the others.

Indeed, using the smoothing function \(g(r) \), we know from the property (141) with \(r = R_A \) that \(\sum_{R_A} g(R_A - R'_A) = 1 \). Therefore we can insert this sum into the term

\[
\sum_{R_A} \left[e^{i(K' - K) \cdot R_A} F_A^{K'}(R_A) F_A^K(R_A) \right],
\]

obtaining

\[
\sum_{R_A} \left\{ \left[\sum_{R'_A} g(R_A - R'_A) \right] e^{i(K' - K) \cdot R_A} F_A^{K'}(R_A) F_A^K(R_A) \right\},
\]

that can be rewritten, as a result of the point-symmetry of the function \(g \) with respect to its center and thus of the fact that \(g(R_A - R'_A) = g(-(R_A - R'_A)) \), in this way:

\[
\sum_{R_A} \sum_{R'_A} g(R'_A - R_A) e^{i(K' - K) \cdot R_A} F_A^{K'}(R_A) F_A^K(R_A).
\]

If then we use the property (144) with \(r = R'_A \) and in particular the fact that

\[
g(R'_A - R_A) F_A^{K'}(R_A) = g(R'_A - R_A) F_A^{K'}(R'_A)
\]

(due to the smoothness of the envelope functions), the term becomes

\[
\sum_{R'_A} \left[\sum_{R_A} g(R'_A - R_A) e^{i(K' - K) \cdot R_A} \left. F_A^{K'}(R'_A) F_A^K(R_A) \right] \right.
\]

and, by way of the property (143) with \(r = R'_A \), we conclude that the quantities between square brackets, and thus the overall term, are very small.

Analogously, we can see that the terms

\[
\sum_{R_A} \left[e^{-i(K' - K) \cdot R_A} F_A^{K'}(R_A) F_A^K(R_A) \right] = \\
\sum_{R_A} \left\{ \left[\sum_{R'_A} g(R_A - R'_A) \right] e^{-i(K' - K) \cdot R_A} F_A^{K'}(R_A) F_A^K(R_A) \right\} = \\
\sum_{R_A} \sum_{R'_A} g(R'_A - R_A) e^{-i(K' - K) \cdot R_A} F_A^{K'}(R_A) F_A^K(R_A) = \\
\sum_{R_A} \left[\sum_{R'_A} g(R'_A - R_A) e^{-i(K' - K) \cdot R_A} \left. F_A^{K'}(R'_A) F_A^K(R_A) \right] \right.
\]
\[
\sum_{R_B} \left[e^{i(K' - K) \cdot R_B} F_B^{K^*}(R_B) F_B^K(R_B) \right] = \\
\sum_{R_B} \left\{ \left[\sum_{R_B'} g(R_B - R_B') e^{i(K' - K) \cdot R_B} F_B^{K^*}(R_B) F_B^K(R_B) \right] \right\} = \\
\sum_{R_B} \sum_{R_B'} g(R_B' - R_B) e^{i(K' - K) \cdot R_B} F_B^{K^*}(R_B) F_B^K(R_B) = \\
\sum_{R_B} \left[\sum_{R_B'} g(R_B' - R_B) e^{i(K' - K) \cdot R_B} F_B^{K^*}(R_B') F_B^K(R_B') \right],
\]

and

\[
\sum_{R_B} \left[e^{-i(K' - K) \cdot R_B} F_B^{K'^*}(R_B) F_B^K(R_B) \right] = \\
\sum_{R_B} \left\{ \left[\sum_{R_B'} g(R_B - R_B') e^{-i(K' - K) \cdot R_B} F_B^{K'^*}(R_B) F_B^K(R_B) \right] \right\} = \\
\sum_{R_B} \sum_{R_B'} g(R_B' - R_B) e^{-i(K' - K) \cdot R_B} F_B^{K'^*}(R_B) F_B^K(R_B) = \\
\sum_{R_B} \left[\sum_{R_B'} g(R_B' - R_B) e^{-i(K' - K) \cdot R_B} F_B^{K'^*}(R_B') F_B^K(R_B') \right],
\]

are negligible. Since \(g(r) \) has non negligible values only within a few lattice constants from its center, the previous considerations are approximately valid also if we limit the sums to the atoms contained in the area \(S \).
Multiplying the second equation of (245) by \(g(r - R_B)(-ie^{-i\theta'}e^{-iK'R_B}) \), summing it over \(R_B \) and then using the properties of the function \(g \), we find analogously

\[
e^{iK'C_h} \sum_{R_B} g(r - R_B) F^K_B (r + C_h) \]

\[
- ie^{-i\theta'} e^{iK'C_h} \sum_{R_B} g(r - R_B) e^{i(K' - K)R_B} F^{K'}_B (R_B + C_h) = \]

\[
\sum_{R_B} g(r - R_B) F^K_B (R_B) - ie^{-i\theta'} \sum_{R_B} g(r - R_B) e^{i(K' - K)R_B} F^{K'}_B (R_B) \Rightarrow \]

\[
e^{iK'C_h} \sum_{R_B} g(r - R_B) F^K_B (r + C_h) \]

\[
- ie^{-i\theta'} e^{iK'C_h} \left[\sum_{R_B} g(r - R_B) e^{i(K' - K)R_B} \right] F^{K'}_B (r + C_h) = \]

\[
\left[\sum_{R_B} g(r - R_B) F^K_B (r) - ie^{-i\theta'} \left[\sum_{R_B} g(r - R_B) e^{i(K' - K)R_B} \right] \right] F^{K'}_B (r) \Rightarrow \]

\[
e^{iK'C_h} F^K_B (r + C_h) = F^K_B (r). \]

Substituting the value of \(e^{iK'C_h} \), we can rewrite this boundary condition in the form

\[
e^{\frac{2\pi}{3}i\nu} F^K_B (r + C_h) = F^K_B (r) \]

or, equivalently

\[
F^K_B (r + C_h) = e^{-\frac{2\pi}{3}i\nu} F^K_B (r). \]
7. – Extended version of the calculations at pp. 551–553

We can proceed analogously for the boundary conditions near K'. Indeed, multiplying the first equation of (245) by $g(r-R_A)(ie^{-i\theta'}e^{-iK'R_A})$, summing it over R_A and then using the properties of the function g, we find

$$\begin{align*}
&ie^{-i\theta'}e^{iK'C_h} \sum_{R_A} g(r-R_A)e^{i(K-K')R_A} F_K^A (r+C_h) \\
&+ e^{iK'C_h} \sum_{R_A} g(r-R_A)F_{K'}^A (r+C_h) = \\
&ie^{-i\theta'} \sum_{R_A} g(r-R_A)e^{i(K-K')R_A} F_K^A (r) + \sum_{R_A} g(r-R_A)F_{K'}^A (r) \\
&\Rightarrow ie^{-i\theta'}e^{iK'C_h} \left[\sum_{R_A} g(r-R_A) \right] F_K^A (r+C_h) \\
&+ e^{iK'C_h} \left[\sum_{R_A} g(r-R_A) \right] F_{K'}^A (r) = \\
&ie^{-i\theta'} \sum_{R_A} g(r-R_A)e^{i(K-K')R_A} F_K^A (r) + \sum_{R_A} g(r-R_A)F_{K'}^A (r) \\
&\Rightarrow e^{iK'C_h} F_{K'}^A (r+C_h) = F_{K'}^A (r).
\end{align*}$$

The scalar product between K' and C_h is equal to

$$K' \cdot C_h = -\frac{2\pi}{3} (m-n) = -2\pi \tilde{N} - \frac{2\pi \nu}{3},$$

where we have used the previously introduced relation $m-n = 3\tilde{N} + \nu$ with $\nu = 0$ or ± 1 and \tilde{N} a proper integer. Thus we have that

$$e^{iK'C_h} = e^{-i2\pi \tilde{N}}e^{-i2\pi \frac{\nu}{3}} = e^{-i\frac{2\pi \nu}{3}}$$

and consequently the boundary condition near K' is

$$e^{-i\frac{2\pi \nu}{3}} F_{K'}^A (r+C_h) = F_{K'}^A (r),$$

or, equivalently

$$F_{K'}^A (r+C_h) = e^{i\frac{2\pi \nu}{3}} F_{K'}^A (r).$$

On the other hand, multiplying the second equation of (245) by $g(r-R_B)e^{-iK'R_B}$,
summing it over R_B and then using the properties of the function g, we find

$$
(277) \quad i e^{iK'c_h} \sum_{R_B} g(r - R_B) e^{i(K' - K)\cdot R_B} F^K_B (R_B + C_h) + e^{iK' c_h} \sum_{R_B} g(r - R_B) F^{-K'}_B (R_B + C_h) =
$$

$$
 i e^{iK' c_h} \sum_{R_B} g(r - R_B) e^{i(K' - K)\cdot R_B} F^K_B (R_B) + \sum_{R_B} g(r - R_B) F^{K'}_B (R_B) \Rightarrow
$$

$$
 i e^{iK' c_h} \sum_{R_B} g(r - R_B) e^{i(K' - K)\cdot R_B} F^K_B (r + C_h) + e^{iK' c_h} \sum_{R_B} g(r - R_B) F^{K'}_B (r + C_h) =
$$

$$
 i e^{iK' c_h} \sum_{R_B} g(r - R_B) e^{i(K' - K)\cdot R_B} F^K_B (r) + \sum_{R_B} g(r - R_B) F^{K'}_B (r) \Rightarrow
$$

$$
e^{iK' c_h} F^{K'}_B (r + C_h) = F^{K'}_B (r).$$

Substituting the value of $e^{iK' c_h}$, we can rewrite this second boundary condition near K' in the form

$$
(278) \quad e^{-\frac{2\pi i}{3}} F^{K'}_B (r + C_h) = F^{K'}_B (r),
$$

or, equivalently

$$
(279) \quad F^{K'}_B (r + C_h) = e^{\frac{2\pi i}{3}} F^{K'}_B (r).
$$

Thus the overall periodic boundary condition near K' is

$$
(280) \quad \begin{bmatrix} F^K_A (r + C_h) \\ F^K_B (r + C_h) \end{bmatrix} = e^{\frac{2\pi i}{3}} \begin{bmatrix} F^K_A (r) \\ F^K_B (r) \end{bmatrix},
$$

which can be written in a compact form

$$
(281) \quad F^{K'} (r + C_h) = e^{\frac{2\pi i}{3}} F^{K'} (r).
$$

Substituting the form that, in the absence of an external potential, the envelope functions have near K' (eq. (204))

$$
(282) \quad F_{sk}^{K'} (r) = \frac{1}{\sqrt{2Ld}} e^{ikr} e^{i\hat{\phi}_s (\kappa)} R(\alpha(\kappa)) |\tilde{s}\rangle = \frac{1}{\sqrt{2Ld}} e^{i(k_x x + k_y y)} e^{i\hat{\phi}_s (\kappa)} R(\alpha(\kappa)) |\tilde{s}\rangle,
$$

the periodic boundary condition becomes

$$
(283) \quad \frac{1}{\sqrt{2Ld}} e^{ikr} e^{i\hat{\phi}_s (\kappa)} R(\alpha(\kappa)) |\tilde{s}\rangle = e^{\frac{2\pi i}{3}} \frac{1}{\sqrt{2Ld}} e^{ikr} e^{i\hat{\phi}_s (\kappa)} R(\alpha(\kappa)) |\tilde{s}\rangle,
$$

P. MARCONCINI and M. MACUCCI
THE \(\mathbf{k} \cdot \mathbf{p} \) METHOD AND ITS APPLICATION TO GRAPHENE-RELATED MATERIALS

or, equivalently

\[e^{i\kappa \cdot \mathbf{C}_h} = e^{i\frac{2\pi \kappa}{3}}. \]

This can be rewritten in the form

\[e^{i\kappa \cdot \mathbf{L}} = e^{i\frac{2\pi \kappa}{3}} = e^{i\frac{2\pi \kappa}{3}} e^{i2\pi \tilde{N}}, \]

or, equivalently

\[\kappa \cdot \mathbf{C}_h = \frac{2\pi \nu}{3} + 2\pi \tilde{N} \]

and thus

\[\kappa = \frac{2\pi}{L} \left(\frac{\pi + \frac{\nu}{3}}{3} \right) = \kappa_\nu(\pi), \]

with \(\pi \) integer.

Analogously to what we have done near \(\mathbf{K} \), this condition on \(\kappa \) can be found also setting

\[e^{i\mathbf{k} \cdot \mathbf{C}_h} = 1 \]

or, equivalently

\[\mathbf{k} \cdot \hat{\mathbf{C}}_h = \kappa_x = (\mathbf{K}')_x + \kappa_x = \frac{2\pi}{L} \tilde{m}, \]

which (using eq. (274)) becomes

\[\kappa_x = \frac{2\pi}{L} \tilde{m} - (\mathbf{K}')_x = \frac{2\pi}{L} \tilde{m} - \mathbf{K}' \cdot \mathbf{C}_h = \frac{2\pi}{L} \tilde{m} + \frac{2\pi}{L} \tilde{N} + \frac{2\pi}{3L} \nu = \frac{2\pi}{L} (\tilde{m} + \tilde{N} + \frac{\nu}{3}) = \frac{2\pi}{L} (\tilde{\pi} + \frac{\nu}{3}) = \kappa_\nu(\tilde{\pi}) \]

(with \(\tilde{\pi} \equiv \tilde{m} + \tilde{N} \)).

If we substitute this condition on \(\kappa_x \) in the dispersion relations of graphene, we find

\[E_{s,\pi}(\kappa_y) = s\gamma |\kappa| = s\gamma \sqrt{\kappa_x^2 + \kappa_y^2} = s\gamma \sqrt{\tilde{\kappa}_\nu(\tilde{\pi})^2 + \kappa_y^2}, \]

where \(\kappa_y \) now is the wave vector \(\mathbf{k} \) of the nanotube and \(\kappa_y \) is the difference between the wave vector \(\mathbf{k} \) of the nanotube and the component of \(\mathbf{K}' \) along \(y \).

On the other hand, if, starting from eq. (204), we choose as arbitrary phase \(\tilde{\phi}_s = \alpha/2 \) and then we enforce the condition on \(\kappa_x \), we find as envelope functions in the carbon
nanotube near K^\prime:

\begin{equation}
F_{s\kappa}^{K^\prime}(r) = \frac{1}{\sqrt{2L\ell}} e^{i\kappa_x x + i\kappa_y y} e^{i\tilde{\phi}_s} \begin{bmatrix} e^{i\frac{\tilde{\phi}_s}{2}} & 0 \\ 0 & e^{-i\frac{\tilde{\phi}_s}{2}} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} i s \\ 1 \end{bmatrix} =
\end{equation}

\begin{equation}
= \frac{1}{2\sqrt{L\ell}} e^{i(\kappa_x x + \kappa_y y)} \begin{bmatrix} is e^{i\frac{\tilde{\phi}_s}{2}} \\ e^{-i\frac{\tilde{\phi}_s}{2}} \end{bmatrix} = \frac{1}{2\sqrt{L\ell}} e^{i(\kappa_x x + \kappa_y y)} \begin{bmatrix} i s e^{i\alpha} \\ 1 \end{bmatrix} =
\end{equation}

\begin{equation}
= \frac{1}{2\sqrt{L\ell}} \begin{bmatrix} s e^{i(\frac{\pi}{2} + \alpha)} \\ 1 \end{bmatrix} e^{i\kappa_x x + i\kappa_y y} =
\end{equation}

\begin{equation}
= \frac{1}{2\sqrt{L\ell}} \begin{bmatrix} s\tilde{b}_\nu(\tilde{\pi}, \kappa_y) \\ 1 \end{bmatrix} e^{i\tilde{\mu}_\nu(\tilde{\pi}) x + i\kappa_y y} = F_{s\kappa\nu}^{K^\prime}(r),
\end{equation}

where (using the definition of the angle α: see eq. (193))

\begin{equation}
\tilde{b}_\nu(\tilde{\pi}, \kappa_y) = e^{i(\frac{\pi}{2} + \alpha)} = \frac{\kappa_x + i\kappa_y}{\sqrt{\kappa_x^2 + \kappa_y^2}} = \frac{\tilde{\kappa}_\nu(\tilde{\pi}) + i\kappa_y}{\sqrt{\tilde{\kappa}_\nu(\tilde{\pi})^2 + \kappa_y^2}}.
\end{equation}
8. – Extended version of the calculations at pp. 564–565

Let us now enforce the boundary conditions on $\Phi_B^K(y)$ and $\Phi_A^K(y)$:

\begin{align}
(325) \quad \Phi_B^K(0) = 0 \Rightarrow C + D = 0 \Rightarrow D = -C; \\
\Phi_A^K(\bar{W}) = 0 \Rightarrow \frac{\gamma}{\mathcal{E}}((\kappa'_x + z')Ce^{z'\bar{W}} + (\kappa'_x - z')De^{-z'\bar{W}}) = 0 \Rightarrow \\
(k'_x + z')Ce^{z'\bar{W}} - (k'_x - z')Ce^{-z'\bar{W}} = 0 \Rightarrow \\
e^{-2z'\bar{W}} = \frac{k'_x + z'}{k'_x - z'} = \frac{(-k'_x) - z'}{(-k'_x) + z'},
\end{align}

which is equal to eq. (307) if we substitute κ_x with $-\kappa'_x$.

Here we consider again real values of κ'_x.

If we graphically represent (fig. 11, with z substituted with z', κ_x with $-\kappa'_x$, and $-\kappa_x$ with κ'_x) the two functions $f_1(z') = e^{-2z'\bar{W}}$ and $f_2(z') = ((-\kappa'_x) - z')/((-\kappa'_x) + z')$, we see that (apart from $z' = 0$, which corresponds to identically null Φ's) there is an intersection between f_1 and f_2 for a real value of z' (and thus eq. (325) has a real solution z') only if $-\kappa'_x > 0$ (i.e. if $\kappa'_x < 0$) and if $f_1(z')$ is steeper than $f_2(z')$ in $z' = 0$, i.e. if

\begin{align}
&\left| \left[\frac{d}{dz'} f_1(z') \right]_{z'=0} \right| > \left| \left[\frac{d}{dz'} f_2(z') \right]_{z'=0} \right| \\
&\left| -2\bar{W}e^{-2z'\bar{W}} \right|_{z'=0} > \left| \left[\frac{1}{(-\kappa'_x) + z'} - \frac{(-\kappa'_x) - z'}{((-\kappa'_x) + z')^2} \right]_{z'=0} \right| = \\
&\left| \frac{(-\kappa'_x) + z' + (-\kappa'_x) - z'}{((-\kappa'_x) + z')^2} \right|_{z'=0} = \left| \left[\frac{2(-\kappa'_x)}{((-\kappa'_x) + z')^2} \right]_{z'=0} \right| = 2\bar{W} > \frac{2(-\kappa'_x)}{(-\kappa'_x)^2} \Rightarrow \bar{W} > \frac{1}{-\kappa'_x} \Rightarrow -\kappa'_x > \frac{1}{\bar{W}} \Rightarrow \kappa'_x < -\frac{1}{\bar{W}}.
\end{align}

If instead $\kappa'_x > -1/\bar{W}$, eq. (325) does not have real solutions z' (apart from $z' = 0$).

In the case of real z', from eq. (325) we can find that

\begin{align}
(326) \quad e^{-2z'\bar{W}} = \frac{(-\kappa'_x) - z'}{(-\kappa'_x) + z'} \Rightarrow (-\kappa'_x)e^{-2z'\bar{W}} + z'e^{-2z'\bar{W}} = (-\kappa'_x) - z' \Rightarrow \\
(-\kappa'_x)(1 - e^{-2z'\bar{W}}) = z'(1 + e^{-2z'\bar{W}}) \Rightarrow \\
-k'_x = \frac{z'}{1 - e^{-2z'\bar{W}}} = \frac{z'e^{z'\bar{W}} + e^{-z'\bar{W}}}{e^{z'\bar{W}} - e^{-z'\bar{W}}} = \frac{z'}{\tanh(z'\bar{W})} \Rightarrow \\
\kappa'_x = -\frac{z'}{\tanh(z'\bar{W})},
\end{align}

($z' = 0$ does not have to be considered) and thus

\begin{align}
\kappa'_x = -\frac{z'}{\tanh(z'\bar{W})}.
\end{align}
We can write (exploiting what we have found from the boundary conditions) that

\[
\Phi_K(y) = \frac{\gamma}{E} \left((\kappa' + z')Ce^{z'y} + (\kappa' - z')De^{-z'y} \right) = \\
\frac{\gamma}{E} \left((\kappa' + z')Ce^{z'y} - (\kappa' - z')Ce^{-z'y} \right) = \\
\frac{\gamma}{E} \left(\kappa'(e^{z'y} - e^{-z'y}) + z'(e^{z'y} + e^{-z'y}) \right) = \\
\frac{\gamma}{E} 2C (\kappa'_x \sinh(z'y) + z' \cosh(z'y)) = \\
2C \frac{\gamma}{E} z' \frac{\cosh(z'\tilde{W}) \sinh(-z'y) + \sinh(z'\tilde{W}) \cosh(-z'y)}{\sinh(z'\tilde{W})} = \\
2C \left(\frac{\gamma}{E} z' \frac{\sinh(z'(\tilde{W} - y))}{\sinh(z'\tilde{W})} \right),
\]

where in the last step we have exploited the fact that, due to eq. (327), the product between \(\gamma/E\) and \(z'/\sinh(z'\tilde{W})\) can only be equal to +1 (if the two quantities have the same sign) or −1 (if they have opposite signs).

Moreover we have that

\[
\Phi_K'(y) = Ce^{z'y} + De^{-z'y} = Ce^{z'y} - C(e^{z'y} - e^{-z'y}) = 2C \sinh(z'y).
\]

These are edge states, each one exponentially localized on one edge of the ribbon.

Also in this case, these edge states correspond to bands flattened towards \(E = 0\). Since the Dirac point \(K'\), folded into the Brillouin zone \((-\pi/a, \pi/a)\) of the zigzag nanoribbon, corresponds to \(k_x = 4\pi/(3a) - 2\pi/a = -2\pi/(3a)\), the condition \(\kappa'_x < -1/\tilde{W}\) is equivalent to \(\kappa'_x = K'_x + \kappa'_x < -2\pi/(3a) - 1/\tilde{W}\). Therefore also in the region \(-\pi/a < k_x < -2\pi/(3a) - 1/\tilde{W}\) we have two bands flattened towards \(E = 0\), which confirms the metallic nature of zigzag nanoribbons.
Let us now instead consider the imaginary solutions \(z' = \imath \kappa'_n \) (with \(\kappa'_n \) real) of eq. (325). In this case the dispersion relation \(E = \pm \gamma \sqrt{\kappa'_x^2 - z'^2} \) becomes \(E = \pm \gamma \sqrt{\kappa'_x^2 + \kappa'_n^2} \). The solutions are given by

\[
(329) \quad e^{-2z' \tilde{W}} = \frac{\kappa'_x + z'}{\kappa'_x - z'} \Rightarrow \\
e^{-i2\kappa'_n \tilde{W}} = \frac{\kappa'_x + i\kappa'_n}{\kappa'_x - i\kappa'_n} = \frac{\sqrt{\kappa'_x^2 + \kappa'_n^2}}{e^{i2\tilde{W}(\kappa'_x + i\kappa'_n)}} = \frac{e^{i2\tilde{W}(\kappa'_x + i\kappa'_n)}}{e^{-i2\tilde{W}(\kappa'_x + i\kappa'_n)}} = \\
k'_n \tilde{W} = -\tilde{W}(\kappa'_x + i\kappa'_n) - \pi m \Rightarrow \tan(k'_n \tilde{W}) = \frac{\kappa'_n}{k'_x} = -\frac{k'_n}{\tan(k'_n \tilde{W})}
\]

(with \(m \) integer); \(\kappa'_n = 0 \) corresponds to identically null \(\Phi \)'s and thus does not have to be considered. We have that

\[
(330) \quad \left(\frac{E}{\gamma} \right)^2 = \kappa'_x^2 + \kappa'_n^2 = \left(-\frac{\kappa'_n}{\tan(k'_n \tilde{W})} \right)^2 + \kappa'_n^2 = \left(\cos^2 (k'_n \tilde{W}) + 1 \right) \frac{1}{\tan(k'_n \tilde{W})} = \\
\frac{\cos^2 (k'_n \tilde{W}) + \sin^2 (k'_n \tilde{W})}{\sin^2 (k'_n \tilde{W})} \Rightarrow |E| = \left| \frac{\kappa'_n}{\tan(k'_n \tilde{W})} \right|,
\]

since (for the properties of the sin function) \(|\sin(k'_n \tilde{W})| < |k'_n \tilde{W}| = |k'_n| \tilde{W} \), we see that now

\[
\left| \frac{E}{\gamma} \right| |\kappa'_n| \tilde{W} = 1
\]

In this case we can write (exploiting what we have found from the boundary conditions) that

\[
(331) \quad \Phi_A(y) = \frac{\gamma}{E} \left((k'_x + i\kappa'_n)Ce^{i\kappa'_n y} + (k'_x - i\kappa'_n)De^{-i\kappa'_n y} \right) = \\
\frac{\gamma}{E} \left((k'_x + i\kappa'_n)Ce^{i\kappa'_n y} - (k'_x - i\kappa'_n)Ce^{-i\kappa'_n y} \right) = \\
\frac{\gamma}{E} C \left(k'_x(e^{i\kappa'_n y} - e^{-i\kappa'_n y}) + i\kappa'_n(e^{i\kappa'_n y} + e^{-i\kappa'_n y}) \right) = \\
\frac{\gamma}{E} 2iC(\kappa'_x \sin(k'_n y) + \kappa'_n \cos(k'_n y)) = \\
2iC \frac{\gamma}{E} \left(-\frac{\kappa'_n}{\tan(k'_n \tilde{W})} \sin(k'_n y) + \kappa'_n \cos(k'_n y) \right) = \\
2iC \frac{\gamma}{E} \left(\frac{\kappa'_n}{\sin(k'_n \tilde{W})} \sin(k'_n (\tilde{W} - y)) \right) = \\
2iC \frac{\gamma}{E} \left(\frac{\kappa'_n}{\sin(k'_n \tilde{W})} \sin(k'_n (\tilde{W} - y)) \right),
\]
where in the last step we have taken advantage of the fact that, due to eq. (330), the product between γ/E and $\kappa_n'/\sin(\kappa_n' W)$ can only be equal to $+1$ (if the two quantities have the same sign) or -1 (if they have opposite signs).

Moreover we have that

$$\Phi^{K'}_B(y) = Ce^{i\kappa_n'y} + De^{-i\kappa_n'y} = Ce^{i\kappa_n'y} - Ce^{-i\kappa_n'y} = C(e^{i\kappa_n'y} - e^{-i\kappa_n'y}) = C2i\sin(\kappa_n'y).$$

These are confined states extending all over the ribbon.

Obviously, once the expressions of the functions Φ have been obtained, the overall wave function is given by the equations (296), (297) and (299).
Case II-C

Finally, eqs. (360) are satisfied also if

\[
\begin{align*}
B &= 0, \\
\sinh(\kappa_{ni}\tilde{W})\cos((\kappa_{nr} - K)\tilde{W}) - i\cosh(\kappa_{ni}\tilde{W})\sin((\kappa_{nr} - K)\tilde{W}) &= 0.
\end{align*}
\]

If we separately equate to zero the real and imaginary part of the second equation, we find

\[
\begin{align*}
B &= 0, \\
\sinh(\kappa_{ni}\tilde{W})\cos((\kappa_{nr} - K)\tilde{W}) &= 0, \\
\cosh(\kappa_{ni}\tilde{W})\sin((\kappa_{nr} - K)\tilde{W}) &= 0.
\end{align*}
\]

Since the hyperbolic cosine is never equal to zero, these become

\[
\begin{align*}
B &= 0, \\
\sinh(\kappa_{ni}\tilde{W}) \cos((\kappa_{nr} - K)\tilde{W}) &= 0, \\
\sin((\kappa_{nr} - K)\tilde{W}) &= 0.
\end{align*}
\]

However, when the sine of an angle is equal to zero, the cosine of that angle is certainly different from zero; therefore the previous equations become

\[
\begin{align*}
B &= 0, \\
\sinh(\kappa_{ni}\tilde{W}) &= 0, \\
\sin((\kappa_{nr} - K)\tilde{W}) &= 0.
\end{align*}
\]

Since the hyperbolic sine is null only when its argument is null, we conclude that in this case:

\[
\begin{align*}
B &= 0, \\
\kappa_{ni} &= 0, \\
\sin((\kappa_{nr} - K)\tilde{W}) &= 0, \\
\Rightarrow \\
B &= 0, \\
\kappa_n &\text{ real}, \\
\sin((\kappa_n - K)\tilde{W}) &= 0.
\end{align*}
\]

Due to the fact that $B = 0$, also $C = -iB = 0$ (while $D = -iA$).

Instead the consequence of the condition on $\sin((\kappa_n - K)\tilde{W})$ is

\[
\begin{align*}
\sin((\kappa_n - K)\tilde{W}) &= 0 \Rightarrow (\kappa_n - K)\tilde{W} = n\pi \Rightarrow \\
\kappa_n - K &= n\frac{\pi}{\tilde{W}} \Rightarrow \kappa_n = n\frac{\pi}{\tilde{W}} + K.
\end{align*}
\]
In this case the Φ functions (346) are equal to

\[
\begin{align*}
\Phi^K_A(y) &= \frac{\gamma}{E} ((\kappa_x - i\kappa_n)Ae^{i\kappa_n y} + (\kappa_x + i\kappa_n)Be^{-i\kappa_n y}) = \\
\Phi^K_B(y) &= Ae^{i\kappa_n y} + Be^{-i\kappa_n y} = Ae^{i\kappa_n y} = Ae^{-i\kappa_n y}, \\
\Phi^{K'}_A(y) &= \frac{\gamma}{E} ((\kappa_x + i\kappa_n)Ce^{i\kappa_n y} + (\kappa_x - i\kappa_n)De^{-i\kappa_n y}) = \\
&= -\frac{2}{E} (\kappa_x - i\kappa_n)iAe^{-i\kappa_n y} = -\frac{\gamma}{E} (\kappa_x + i\kappa_n)iAe^{i\kappa_n y}, \\
\Phi^{K'}_B(y) &= Ce^{i\kappa_n y} + De^{-i\kappa_n y} = -iAe^{-i\kappa_n y} = -iAe^{i\kappa_n y},
\end{align*}
\]

with

\[
\tilde{\kappa}_n = -\kappa_n = -\left(n \pi W + K\right) = -n \pi W - K = \tilde{n} \pi W - K
\]

(383) where \(\tilde{n} = -n\) is an integer. Clearly, if \(\kappa_n\) satisfies \(E = \pm \gamma \sqrt{\kappa_x^2 + \kappa_n^2}\), also \(\tilde{\kappa}_n = -\kappa_n\) satisfies \(E = \pm \gamma \sqrt{\kappa_x^2 + \kappa_n^2}\)